Search results for "thin-film transistor"
showing 10 items of 17 documents
Tailored conjugated polymer Langmuir-Schafer thin films in sensing transistors
2004
Organic Thin Film Transistors (OTFTs) have been fabricated, in a standard bottom gate configuration, with Langmuir-Schäfer (LS) or cast thin films of regioregular poly[1,4-(2,5-dioctyloxyphenylene)-2,5-thiophene], synthesized via an organometallic protocol, as active layers. The transistors electrical characterization has evidenced that LS based devices exhibit better performance level than cast film ones. Appealing perspectives for newly substituted conjugated polymers in OTFT sensing devices are discussed.
A DC and small signal AC model for organic thin film transistors including contact effects and non quasi static regime
2017
Abstract We present a compact model for the DC and small signal AC analysis of Organic Thin Film Transistors (OTFTs). The DC part of the model assumes that the electrical current injected in the OTFT is limited by the presence of a metal/organic semiconductor junction that, at source, acts as a reverse biased Schottky junction. By including this junction, modeled as a reverse biased gated diode at source, the DC model is able to reproduce the scaling of the electrical characteristics even for short channel devices. The small signal AC part of the model uses a transmission line approach in order to compute the impedances of the channel and parasitic regions of the device. The overlap capacit…
Two-Step Solution-Processed Two-Component Bilayer Phthalocyaninato Copper-Based Heterojunctions with Interesting Ambipolar Organic Transiting and Eth…
2016
International audience; The two-component phthalocyaninato copper-based heterojunctions fabricated from n-type CuPc(COOC8H17)(8) and p-type CuPc(OC8H17)(8) by a facile two-step solution-processing quasi-Langmuir-Shafer method with both n/p- and p/n-bilayer structures are revealed to exhibit typical ambipolar air-stable organic thin-film transistor (OTFT) performance. The p/n-bilayer devices constructed by depositing CuPc(COOC8H17)(8) film on CuPc(OC8H17)(8) sub-layer show superior OTFT performance with hole and electron mobility of 0.11 and 0.02 cm(2) V-1 s(-1), respectively, over the ones with n/p-bilayer heterojunction structure with the hole and electron mobility of 0.03 and 0.016 cm(2) …
Current injection from metal to MoS2 probed at nanoscale by conductive atomic force microscopy
2016
Contacts with MoS2 are currently the object of many investigations, since current injection through metal/MoS2 interfaces represents one of the limiting factors to the performance of MoS2 thin film transistors. In this paper, we employed conductive atomic force microscopy (CAFM) to investigate the current injection mechanisms from a nanometric contact (a Pt coated tip) to the surface of MoS2 thin films exfoliated on SiO2. The analysis of local current-voltage (I-V) characteristics on a large array of tip positions provided high spatial resolution information on the lateral homogeneity of the tip/MoS2 Schottky barrier Phi(B) and of the ideality factor n. From the histograms of the measured P…
A Very Low Band Gap Diketopyrrolopyrrole-Porphyrin Conjugated Polymer
2017
International audience; A porphyrin-diketopyrrolopyrrole-containing polymer (poly(porphyrin-diketopyrrolopyrrole) (PPDPP)) shows impressive molar absorption coefficients from lambda=300 to 1000 nm. The photophysical and structural properties of PPDPP have been studied. With PPDPP as the electron donor and [ 6,6]phenyl C-71 butyric acid methyl ester (PC71BM) as the electron acceptor, the bulk heterojunction polymer solar cell showed overall power conversion efficiencies of 4.18 and 6.44% for as-cast and two-step annealing processed PPDPP: PC71BM (1: 2) active layers, respectively. These results are quite impressive for porphyrin-containing polymers, especially when directly included in the p…
Random Structural Modification of a Low-Band-Gap BODIPY-Based Polymer
2017
International audience; A BODIPY thiophene polymer modified by extending conjugation of the BODIPY chromophore is reported. This modification induces tunability of energy levels and therefore absorption wavelengths in order to target lower energies.
Thin-Film Transistors: Two-Step Solution-Processed Two-Component Bilayer Phthalocyaninato Copper-Based Heterojunctions with Interesting Ambipolar Org…
2016
MATERIALS AND PROCESSING ISSUES FOR THE MANUFACTURING OF INTEGRATED PASSIVE AND ACTIVE DEVICES ON FLEXIBLE SUBSTRATES
2008
Plast_ICs is a Public/Private Laboratory funded by Italian Government aimed to build a novel technological platform for the development of flexible electronics, mainly, but not solely, based on thin inorganic films. Integration of different functions, on single and/or multiple plastic foils, to generate a smart system is the final goal of the project. The building blocks of the platform will be presented, starting from the different plastic substrates characterization, going through the development of active devices, such as thin-film- transistors, and passive devices, like thin-film- resistors, capacitors, inductors. Fully inorganic elementary devices, based on optical patterning and in va…
Thin Film Metal Oxides for Displays and Other Optoelectronic Applications
2020
Thin films of metal oxides have been extensively studied for various applications because of their durability, lower cost and lower toxicity, excellent chemical, magnetic, electrical and optical properties. A fusion of electrical and optical properties led to the growth of optoelectronic devices for a variety of applications including displays, light-emitting diodes, photovoltaic cells, photodetectors, optical storage, medicine, and so on. Optoelectronic devices have revolutionized our daily lives with their potentials in various aspects. An extensive research on materials for these devices has to be credited for the improvement in their performance over the years. Several metal oxide thin …
Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures
2013
This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-…